堆和二叉堆的介绍
1. 堆的定义
堆(heap),这里所说的堆是数据结构中的堆,而不是内存模型中的堆。堆通常是一个可以被看做一棵树,它满足下列性质:
- [性质一] 堆中某个节点的值总是不大于或不小于其父节点的值;
- [性质二] 堆总是一棵完全树。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、左倾堆、斜堆、斐波那契堆等等。
2. 二叉堆的定义
二叉堆是完全二元树或者是近似完全二元树,它分为两种:最大堆和最小堆。示意图如下:
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;
最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),知识实现上稍微有一丁点区别。
假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的左孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2)。
假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的左孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2)。
注意:本文二叉堆的实现统统都是采用"二叉堆第一个元素在数组索引为0"的方式!
二叉堆的图文解析
本文是以"最大堆"来进行介绍的。最大堆的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍,其它内容请参考后面的完整源码。
1. 添加
假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。
最大堆的插入代码
/*
* 最大堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
protected void filterup(int start) {
int c = start; // 当前节点(current)的位置
int p = (c-1)/2; // 父(parent)结点的位置
T tmp = mHeap.get(c); // 当前节点(current)的大小
while(c > 0) {
int cmp = mHeap.get(p).compareTo(tmp);
if(cmp >= 0)
break;
else {
mHeap.set(c, mHeap.get(p));
c = p;
p = (p-1)/2;
}
}
mHeap.set(c, tmp);
}
/*
* 将data插入到二叉堆中
*/
public void insert(T data) {
int size = mHeap.size();
mHeap.add(data); // 将"数组"插在表尾
filterup(size); // 向上调整堆
}
insert(data)的作用:将数据data添加到最大堆中。当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。
2. 删除
假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除70,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!
最大堆的删除代码
/*
* 最大堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
protected void filterdown(int start, int end) {
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap.get(c); // 当前(current)节点的大小
while(l <= end) {
int cmp = mHeap.get(l).compareTo(mHeap.get(l+1));
// "l"是左孩子,"l+1"是右孩子
if(l < end && cmp<0)
l++; // 左右两孩子中选择较大者,即mHeap[l+1]
cmp = tmp.compareTo(mHeap.get(l));
if(cmp >= 0)
break; //调整结束
else {
mHeap.set(c, mHeap.get(l));
c = l;
l = 2*l + 1;
}
}
mHeap.set(c, tmp);
}
/*
* 删除最大堆中的data
*
* 返回值:
* 0,成功
* -1,失败
*/
public int remove(T data) {
// 如果"堆"已空,则返回-1
if(mHeap.isEmpty() == true)
return -1;
// 获取data在数组中的索引
int index = mHeap.indexOf(data);
if (index==-1)
return -1;
int size = mHeap.size();
mHeap.set(index, mHeap.get(size-1));// 用最后元素填补
mHeap.remove(size - 1); // 删除最后的元素
if (mHeap.size() > 1)
filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆
return 0;
}
二叉堆的实现源码和测试包括
二叉堆的源码包含了"最大堆"和"最小堆"。