二叉堆(二)之 C++详解

上一章介绍了二叉堆的基本概念,并通过C语言实现了二叉堆。本章是二叉堆的C++实现。

堆和二叉堆的介绍

1. 堆的定义

堆(heap),这里所说的堆是数据结构中的堆,而不是内存模型中的堆。堆通常是一个可以被看做一棵树,它满足下列性质:

  • [性质一] 堆中某个节点的值总是不大于或不小于其父节点的值;
  • [性质二] 堆总是一棵完全树。

将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、左倾堆、斜堆、斐波那契堆等等。

2. 二叉堆的定义

二叉堆是完全二元树或者是近似完全二元树,它分为两种:最大堆最小堆。示意图如下:

最大堆:父结点的键值总是大于或等于任何一个子节点的键值;
最小堆:父结点的键值总是小于或等于任何一个子节点的键值。

img


二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),知识实现上稍微有一丁点区别。

假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:

(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的左孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2)。

img


假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:

(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的左孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2)。

img

注意:本文二叉堆的实现统统都是采用"二叉堆第一个元素在数组索引为0"的方式!

二叉堆的图文解析

本文是以"最大堆"来进行介绍的。

1. 基本定义

template <class T>
class MaxHeap{
    private:
        T *mHeap;       // 数据
        int mCapacity;  // 总的容量
        int mSize;      // 实际容量

    private:
        // 最大堆的向下调整算法
        void filterdown(int start, int end);
        // 最大堆的向上调整算法(从start开始向上直到0,调整堆)
        void filterup(int start);
    public:
        MaxHeap();
        MaxHeap(int capacity);
        ~MaxHeap();

        // 返回data在二叉堆中的索引
        int getIndex(T data);
        // 删除最大堆中的data
        int remove(T data);
        // 将data插入到二叉堆中
        int insert(T data);
        // 打印二叉堆
        void print();
};

MaxHeap是最大堆的对应的类。

它包括的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。

2. 添加

假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:

img

如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!

将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。


最大堆的插入代码

/*
 * 最大堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
template <class T>
void MaxHeap<T>::filterup(int start)
{
    int c = start;          // 当前节点(current)的位置
    int p = (c-1)/2;        // 父(parent)结点的位置 
    T tmp = mHeap[c];       // 当前节点(current)的大小

    while(c > 0)
    {
        if(mHeap[p] >= tmp)
            break;
        else
        {
            mHeap[c] = mHeap[p];
            c = p;
            p = (p-1)/2;   
        }       
    }
    mHeap[c] = tmp;
}

/* 
 * 将data插入到二叉堆中
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
int MaxHeap<T>::insert(T data)
{
    // 如果"堆"已满,则返回
    if(mSize == mCapacity)
        return -1;

    mHeap[mSize] = data;        // 将"数组"插在表尾
    filterup(mSize);            // 向上调整堆
    mSize++;                    // 堆的实际容量+1

    return 0;
}

insert(data)的作用:将数据data添加到最大堆中。当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。

3. 删除

假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:

img

从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。

如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。

注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除70,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!

img

最大堆的删除代码

/* 
 * 最大堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
template <class T>
void MaxHeap<T>::filterdown(int start, int end)
{
    int c = start;      // 当前(current)节点的位置
    int l = 2*c + 1;    // 左(left)孩子的位置
    T tmp = mHeap[c];   // 当前(current)节点的大小

    while(l <= end)
    {
        // "l"是左孩子,"l+1"是右孩子
        if(l < end && mHeap[l] < mHeap[l+1])
            l++;        // 左右两孩子中选择较大者,即mHeap[l+1]
        if(tmp >= mHeap[l])
            break;      //调整结束
        else
        {
            mHeap[c] = mHeap[l];
            c = l;
            l = 2*l + 1;   
        }       
    }   
    mHeap[c] = tmp;
}

/*
 * 删除最大堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
template <class T>
int MaxHeap<T>::remove(T data)
{
    int index;
    // 如果"堆"已空,则返回-1
    if(mSize == 0)
        return -1;

    // 获取data在数组中的索引
    index = getIndex(data); 
    if (index==-1)
        return -1;

    mHeap[index] = mHeap[--mSize];  // 用最后元素填补
    filterdown(index, mSize-1);     // 从index位置开始自上向下调整为最大堆

    return 0;
}

二叉堆的实现源码和测试包括

二叉堆的源码包含了"最大堆"和"最小堆"。

  1. 最大堆(MaxHeap.cpp)

  2. 最小堆(MinHeap.cpp)

PS. 二叉堆是"堆排序"的理论基石。后面的算法中会讲解到"堆排序",理解了"二叉堆"之后,"堆排序"就很简单了。

by skywang
Previous     Next