上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树。本章是伸展树的C++实现,后续再给出Java版本。还是那句老话,它们的原理都一样,择其一了解即可。
第1部分 伸展树的介绍
伸展树(Splay Tree)是特殊的二叉查找树。
它的特殊是指,它除了本身是棵二叉查找树之外,它还具备一个特点: 当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。
第2部分 伸展树的C++实现
1. 基本定义
1.1 节点
template <class T>
class SplayTreeNode{
public:
T key; // 关键字(键值)
SplayTreeNode *left; // 左孩子
SplayTreeNode *right; // 右孩子
SplayTreeNode():left(NULL),right(NULL) {}
SplayTreeNode(T value, SplayTreeNode *l, SplayTreeNode *r):
key(value), left(l),right(r) {}
};
SplayTreeNode是伸展树节点对应的类。它包括的几个组成元素:
(01) key -- 是关键字,是用来对伸展树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
1.2 伸展树
template <class T>
class SplayTree {
private:
SplayTreeNode<T> *mRoot; // 根结点
public:
SplayTree();
~SplayTree();
// 前序遍历"伸展树"
void preOrder();
// 中序遍历"伸展树"
void inOrder();
// 后序遍历"伸展树"
void postOrder();
// (递归实现)查找"伸展树"中键值为key的节点
SplayTreeNode<T>* search(T key);
// (非递归实现)查找"伸展树"中键值为key的节点
SplayTreeNode<T>* iterativeSearch(T key);
// 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum();
// 旋转key对应的节点为根节点,并返回值为根节点。
void splay(T key);
// 将结点(key为节点键值)插入到伸展树中
void insert(T key);
// 删除结点(key为节点键值)
void remove(T key);
// 销毁伸展树
void destroy();
// 打印伸展树
void print();
private:
// 前序遍历"伸展树"
void preOrder(SplayTreeNode<T>* tree) const;
// 中序遍历"伸展树"
void inOrder(SplayTreeNode<T>* tree) const;
// 后序遍历"伸展树"
void postOrder(SplayTreeNode<T>* tree) const;
// (递归实现)查找"伸展树x"中键值为key的节点
SplayTreeNode<T>* search(SplayTreeNode<T>* x, T key) const;
// (非递归实现)查找"伸展树x"中键值为key的节点
SplayTreeNode<T>* iterativeSearch(SplayTreeNode<T>* x, T key) const;
// 查找最小结点:返回tree为根结点的伸展树的最小结点。
SplayTreeNode<T>* minimum(SplayTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的伸展树的最大结点。
SplayTreeNode<T>* maximum(SplayTreeNode<T>* tree);
// 旋转key对应的节点为根节点,并返回值为根节点。
SplayTreeNode<T>* splay(SplayTreeNode<T>* tree, T key);
// 将结点(z)插入到伸展树(tree)中
SplayTreeNode<T>* insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z);
// 删除伸展树(tree)中的结点(键值为key),并返回被删除的结点
SplayTreeNode<T>* remove(SplayTreeNode<T>* &tree, T key);
// 销毁伸展树
void destroy(SplayTreeNode<T>* &tree);
// 打印伸展树
void print(SplayTreeNode<T>* tree, T key, int direction);
};
SplayTree是伸展树对应的类。它包括根节点mRoot和伸展树的函数接口。
2. 旋转
旋转是伸展树中需要重点关注的,它的代码如下:
/*
* 旋转key对应的节点为根节点,并返回值为根节点。
*
* 注意:
* (a):伸展树中存在"键值为key的节点"。
* 将"键值为key的节点"旋转为根节点。
* (b):伸展树中不存在"键值为key的节点",并且key < tree->key。
* b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
* b-2 "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
* (c):伸展树中不存在"键值为key的节点",并且key > tree->key。
* c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
* c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::splay(SplayTreeNode<T>* tree, T key)
{
SplayTreeNode<T> N, *l, *r, *c;
if (tree == NULL)
return tree;
N.left = N.right = NULL;
l = r = &N;
for (;;)
{
if (key < tree->key)
{
if (tree->left == NULL)
break;
if (key < tree->left->key)
{
c = tree->left; /* rotate right */
tree->left = c->right;
c->right = tree;
tree = c;
if (tree->left == NULL)
break;
}
r->left = tree; /* link right */
r = tree;
tree = tree->left;
}
else if (key > tree->key)
{
if (tree->right == NULL)
break;
if (key > tree->right->key)
{
c = tree->right; /* rotate left */
tree->right = c->left;
c->left = tree;
tree = c;
if (tree->right == NULL)
break;
}
l->right = tree; /* link left */
l = tree;
tree = tree->right;
}
else
{
break;
}
}
l->right = tree->left; /* assemble */
r->left = tree->right;
tree->left = N.right;
tree->right = N.left;
return tree;
}
template <class T>
void SplayTree<T>::splay(T key)
{
mRoot = splay(mRoot, key);
}
上面的代码的作用:将"键值为key的节点"旋转为根节点,并返回根节点。它的处理情况共包括:
(a):伸展树中存在"键值为key的节点"。
将"键值为key的节点"旋转为根节点。
(b):伸展树中不存在"键值为key的节点",并且key < tree->key。
b-1) "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
b-2) "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
(c):伸展树中不存在"键值为key的节点",并且key > tree->key。
c-1) "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
c-2) "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
下面列举个例子分别对a进行说明。
在下面的伸展树中查找10,共包括"右旋" --> "右链接" --> "组合"这3步。
第一步: 右旋
对应代码中的"rotate right"部分
第二步: 右链接
对应代码中的"link right"部分
第三步: 组合 对应代码中的"assemble"部分
提示:如果在上面的伸展树中查找"70",则正好与"示例1"对称,而对应的操作则分别是"rotate left", "link left"和"assemble"。
其它的情况,例如"查找15是b-1的情况,查找5是b-2的情况"等等,这些都比较简单,大家可以自己分析。
3. 插入
插入代码
/*
* 将结点插入到伸展树中,并返回根节点
*
* 参数说明:
* tree 伸展树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z)
{
SplayTreeNode<T> *y = NULL;
SplayTreeNode<T> *x = tree;
// 查找z的插入位置
while (x != NULL)
{
y = x;
if (z->key < x->key)
x = x->left;
else if (z->key > x->key)
x = x->right;
else
{
cout << "不允许插入相同节点(" << z->key << ")!" << endl;
delete z;
return tree;
}
}
if (y==NULL)
tree = z;
else if (z->key < y->key)
y->left = z;
else
y->right = z;
return tree;
}
template <class T>
void SplayTree<T>::insert(T key)
{
SplayTreeNode<T> *z=NULL;
// 如果新建结点失败,则返回。
if ((z=new SplayTreeNode<T>(key,NULL,NULL)) == NULL)
return ;
// 插入节点
mRoot = insert(mRoot, z);
// 将节点(key)旋转为根节点
mRoot = splay(mRoot, key);
}
insert(key)是提供给外部的接口,它的作用是新建节点(节点的键值为key),并将节点插入到伸展树中;然后,将该节点旋转为根节点。
insert(tree, z)是内部接口,它的作用是将节点z插入到tree中。insert(tree, z)在将z插入到tree中时,仅仅只将tree当作是一棵二叉查找树,而且不允许插入相同节点。
4. 删除
删除代码
/*
* 删除结点(节点的键值为key),返回根节点
*
* 参数说明:
* tree 伸展树的根结点
* key 待删除结点的键值
* 返回值:
* 根节点
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::remove(SplayTreeNode<T>* &tree, T key)
{
SplayTreeNode<T> *x;
if (tree == NULL)
return NULL;
// 查找键值为key的节点,找不到的话直接返回。
if (search(tree, key) == NULL)
return tree;
// 将key对应的节点旋转为根节点。
tree = splay(tree, key);
if (tree->left != NULL)
{
// 将"tree的前驱节点"旋转为根节点
x = splay(tree->left, key);
// 移除tree节点
x->right = tree->right;
}
else
x = tree->right;
delete tree;
return x;
}
template <class T>
void SplayTree<T>::remove(T key)
{
mRoot = remove(mRoot, key);
}
remove(key)是外部接口,remove(tree, key)是内部接口。
remove(tree, key)的作用是:删除伸展树中键值为key的节点。
它会先在伸展树中查找键值为key的节点。若没有找到的话,则直接返回。若找到的话,则将该节点旋转为根节点,然后再删除该节点。
注意:关于伸展树的"前序遍历"、"中序遍历"、"后序遍历"、"最大值"、"最小值"、"查找"、"打印"、"销毁"等接口与"二叉查找树"基本一样,这些操作在"二叉查找树"中已经介绍过了,这里就不再单独介绍了。当然,后文给出的伸展树的完整源码中,有给出这些API的实现代码。这些接口很简单,Please RTFSC(Read The Fucking Source Code)!
第3部分 伸展树的C++实现(完整源码)
点击查看:源代码
关于"队列的声明和实现都在头文件中"的原因,是因为队列的实现利用了C++模板,而"C++编译器不能支持对模板的分离式编译"!
伸展树的测试程序运行结果如下:
== 依次添加: 10 50 40 30 20 60
== 前序遍历: 60 30 20 10 50 40
== 中序遍历: 10 20 30 40 50 60
== 后序遍历: 10 20 40 50 30 60
== 最小值: 10
== 最大值: 60
== 树的详细信息:
60 is root
30 is 60's left child
20 is 30's left child
10 is 20's left child
50 is 30's right child
40 is 50's left child
== 旋转节点(30)为根节点
== 树的详细信息:
30 is root
20 is 30's left child
10 is 20's left child
60 is 30's right child
50 is 60's left child
40 is 50's left child
测试程序的主要流程是:新建伸展树,然后向伸展树中依次插入10,50,40,30,20,60。插入完毕这些数据之后,伸展树的节点是60;此时,再旋转节点,使得30成为根节点。 依次插入10,50,40,30,20,60示意图如下:
将30旋转为根节点的示意图如下: