伸展树(二)之 C++语言详解

上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树。本章是伸展树的C++实现,后续再给出Java版本。还是那句老话,它们的原理都一样,择其一了解即可。

目录
第1部分 伸展树的介绍
第2部分 伸展树的C++实现
第3部分 伸展树的C++实现(完整源码)

第1部分 伸展树的介绍

伸展树(Splay Tree)是特殊的二叉查找树。

它的特殊是指,它除了本身是棵二叉查找树之外,它还具备一个特点: 当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。

第2部分 伸展树的C++实现

1. 基本定义

1.1 节点

template <class T>
class SplayTreeNode{
    public:
        T key;                // 关键字(键值)
        SplayTreeNode *left;    // 左孩子
        SplayTreeNode *right;    // 右孩子


        SplayTreeNode():left(NULL),right(NULL) {}

        SplayTreeNode(T value, SplayTreeNode *l, SplayTreeNode *r):
            key(value), left(l),right(r) {}
};

SplayTreeNode是伸展树节点对应的类。它包括的几个组成元素:
(01) key -- 是关键字,是用来对伸展树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。

1.2 伸展树

template <class T>
class SplayTree {
    private:
        SplayTreeNode<T> *mRoot;    // 根结点

    public:
        SplayTree();
        ~SplayTree();

        // 前序遍历"伸展树"
        void preOrder();
        // 中序遍历"伸展树"
        void inOrder();
        // 后序遍历"伸展树"
        void postOrder();

        // (递归实现)查找"伸展树"中键值为key的节点
        SplayTreeNode<T>* search(T key);
        // (非递归实现)查找"伸展树"中键值为key的节点
        SplayTreeNode<T>* iterativeSearch(T key);

        // 查找最小结点:返回最小结点的键值。
        T minimum();
        // 查找最大结点:返回最大结点的键值。
        T maximum();

        // 旋转key对应的节点为根节点,并返回值为根节点。
        void splay(T key);

        // 将结点(key为节点键值)插入到伸展树中
        void insert(T key);

        // 删除结点(key为节点键值)
        void remove(T key);

        // 销毁伸展树
        void destroy();

        // 打印伸展树
        void print();
    private:

        // 前序遍历"伸展树"
        void preOrder(SplayTreeNode<T>* tree) const;
        // 中序遍历"伸展树"
        void inOrder(SplayTreeNode<T>* tree) const;
        // 后序遍历"伸展树"
        void postOrder(SplayTreeNode<T>* tree) const;

        // (递归实现)查找"伸展树x"中键值为key的节点
        SplayTreeNode<T>* search(SplayTreeNode<T>* x, T key) const;
        // (非递归实现)查找"伸展树x"中键值为key的节点
        SplayTreeNode<T>* iterativeSearch(SplayTreeNode<T>* x, T key) const;

        // 查找最小结点:返回tree为根结点的伸展树的最小结点。
        SplayTreeNode<T>* minimum(SplayTreeNode<T>* tree);
        // 查找最大结点:返回tree为根结点的伸展树的最大结点。
        SplayTreeNode<T>* maximum(SplayTreeNode<T>* tree);

        // 旋转key对应的节点为根节点,并返回值为根节点。
        SplayTreeNode<T>* splay(SplayTreeNode<T>* tree, T key);

        // 将结点(z)插入到伸展树(tree)中
        SplayTreeNode<T>* insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z);

        // 删除伸展树(tree)中的结点(键值为key),并返回被删除的结点
        SplayTreeNode<T>* remove(SplayTreeNode<T>* &tree, T key);

        // 销毁伸展树
        void destroy(SplayTreeNode<T>* &tree);

        // 打印伸展树
        void print(SplayTreeNode<T>* tree, T key, int direction);
};

SplayTree是伸展树对应的类。它包括根节点mRoot和伸展树的函数接口。

2. 旋转

旋转是伸展树中需要重点关注的,它的代码如下:

/* 
 * 旋转key对应的节点为根节点,并返回值为根节点。
 *
 * 注意:
 *   (a):伸展树中存在"键值为key的节点"。
 *          将"键值为key的节点"旋转为根节点。
 *   (b):伸展树中不存在"键值为key的节点",并且key < tree->key。
 *      b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
 *      b-2 "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
 *   (c):伸展树中不存在"键值为key的节点",并且key > tree->key。
 *      c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
 *      c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
 */
template <class T>
SplayTreeNode<T>* SplayTree<T>::splay(SplayTreeNode<T>* tree, T key)
{
    SplayTreeNode<T> N, *l, *r, *c;

    if (tree == NULL) 
        return tree;

    N.left = N.right = NULL;
    l = r = &N;

    for (;;)
    {
        if (key < tree->key)
        {
            if (tree->left == NULL)
                break;
            if (key < tree->left->key)
            {
                c = tree->left;                           /* rotate right */
                tree->left = c->right;
                c->right = tree;
                tree = c;
                if (tree->left == NULL) 
                    break;
            }
            r->left = tree;                               /* link right */
            r = tree;
            tree = tree->left;
        }
        else if (key > tree->key)
        {
            if (tree->right == NULL) 
                break;
            if (key > tree->right->key) 
            {
                c = tree->right;                          /* rotate left */
                tree->right = c->left;
                c->left = tree;
                tree = c;
                if (tree->right == NULL) 
                    break;
            }
            l->right = tree;                              /* link left */
            l = tree;
            tree = tree->right;
        }
        else
        {
            break;
        }
    }

    l->right = tree->left;                                /* assemble */
    r->left = tree->right;
    tree->left = N.right;
    tree->right = N.left;

    return tree;
}

template <class T>
void SplayTree<T>::splay(T key)
{
    mRoot = splay(mRoot, key);
}

上面的代码的作用:将"键值为key的节点"旋转为根节点,并返回根节点。它的处理情况共包括:
(a):伸展树中存在"键值为key的节点"。
     将"键值为key的节点"旋转为根节点。
(b):伸展树中不存在"键值为key的节点",并且key < tree->key。
     b-1) "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
     b-2) "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
(c):伸展树中不存在"键值为key的节点",并且key > tree->key。
     c-1) "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
     c-2) "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。

下面列举个例子分别对a进行说明。

在下面的伸展树中查找10,共包括"右旋" --> "右链接" --> "组合"这3步。

img

第一步: 右旋
对应代码中的"rotate right"部分

img

第二步: 右链接
对应代码中的"link right"部分

img

第三步: 组合 对应代码中的"assemble"部分

img

提示:如果在上面的伸展树中查找"70",则正好与"示例1"对称,而对应的操作则分别是"rotate left", "link left"和"assemble"。
其它的情况,例如"查找15是b-1的情况,查找5是b-2的情况"等等,这些都比较简单,大家可以自己分析。

3. 插入

插入代码

/* 
 * 将结点插入到伸展树中,并返回根节点
 *
 * 参数说明:
 *     tree 伸展树的根结点
 *     key 插入的结点的键值
 * 返回值:
 *     根节点
 */
template <class T>
SplayTreeNode<T>* SplayTree<T>::insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z)
{
    SplayTreeNode<T> *y = NULL;
    SplayTreeNode<T> *x = tree;

    // 查找z的插入位置
    while (x != NULL)
    {
        y = x;
        if (z->key < x->key)
            x = x->left;
        else if (z->key > x->key)
            x = x->right;
        else
        {
            cout << "不允许插入相同节点(" << z->key << ")!" << endl;
            delete z;
            return tree;
        }
    }

    if (y==NULL)
        tree = z;
    else if (z->key < y->key)
        y->left = z;
    else
        y->right = z;

    return tree;
}

template <class T>
void SplayTree<T>::insert(T key)
{
    SplayTreeNode<T> *z=NULL;

    // 如果新建结点失败,则返回。
    if ((z=new SplayTreeNode<T>(key,NULL,NULL)) == NULL)
        return ;

    // 插入节点
    mRoot = insert(mRoot, z);
    // 将节点(key)旋转为根节点
    mRoot = splay(mRoot, key);
}

insert(key)是提供给外部的接口,它的作用是新建节点(节点的键值为key),并将节点插入到伸展树中;然后,将该节点旋转为根节点。
insert(tree, z)是内部接口,它的作用是将节点z插入到tree中。insert(tree, z)在将z插入到tree中时,仅仅只将tree当作是一棵二叉查找树,而且不允许插入相同节点。

4. 删除

删除代码

/* 
 * 删除结点(节点的键值为key),返回根节点
 *
 * 参数说明:
 *     tree 伸展树的根结点
 *     key 待删除结点的键值
 * 返回值:
 *     根节点
 */
template <class T>
SplayTreeNode<T>* SplayTree<T>::remove(SplayTreeNode<T>* &tree, T key)
{
    SplayTreeNode<T> *x;

    if (tree == NULL) 
        return NULL;

    // 查找键值为key的节点,找不到的话直接返回。
    if (search(tree, key) == NULL)
        return tree;

    // 将key对应的节点旋转为根节点。
    tree = splay(tree, key);

    if (tree->left != NULL)
    {
        // 将"tree的前驱节点"旋转为根节点
        x = splay(tree->left, key);
        // 移除tree节点
        x->right = tree->right;
    }
    else
        x = tree->right;

    delete tree;

    return x;

}

template <class T>
void SplayTree<T>::remove(T key)
{
    mRoot = remove(mRoot, key);
}

remove(key)是外部接口,remove(tree, key)是内部接口。
remove(tree, key)的作用是:删除伸展树中键值为key的节点。
它会先在伸展树中查找键值为key的节点。若没有找到的话,则直接返回。若找到的话,则将该节点旋转为根节点,然后再删除该节点。

注意:关于伸展树的"前序遍历"、"中序遍历"、"后序遍历"、"最大值"、"最小值"、"查找"、"打印"、"销毁"等接口与"二叉查找树"基本一样,这些操作在"二叉查找树"中已经介绍过了,这里就不再单独介绍了。当然,后文给出的伸展树的完整源码中,有给出这些API的实现代码。这些接口很简单,Please RTFSC(Read The Fucking Source Code)!

第3部分 伸展树的C++实现(完整源码)

点击查看:源代码

关于"队列的声明和实现都在头文件中"的原因,是因为队列的实现利用了C++模板,而"C++编译器不能支持对模板的分离式编译"!

伸展树的测试程序运行结果如下:

== 依次添加: 10 50 40 30 20 60 
== 前序遍历: 60 30 20 10 50 40 
== 中序遍历: 10 20 30 40 50 60 
== 后序遍历: 10 20 40 50 30 60 
== 最小值: 10
== 最大值: 60
== 树的详细信息: 
60 is root
30 is 60's   left child
20 is 30's   left child
10 is 20's   left child
50 is 30's  right child
40 is 50's   left child

== 旋转节点(30)为根节点
== 树的详细信息: 
30 is root
20 is 30's   left child
10 is 20's   left child
60 is 30's  right child
50 is 60's   left child
40 is 50's   left child

测试程序的主要流程是:新建伸展树,然后向伸展树中依次插入10,50,40,30,20,60。插入完毕这些数据之后,伸展树的节点是60;此时,再旋转节点,使得30成为根节点。 依次插入10,50,40,30,20,60示意图如下:

img

将30旋转为根节点的示意图如下:

img

by skywang
Previous     Next